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Comparison of Semi-Physical and Black-Box Bushing Model
for Vehicle Dynamics Simulation
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Since bushing components have highly nonlinear characteristics according to the amplitude
and the frequency, it is hard to derive a mathematical modeling of the bushing. In this paper,
a semi-physical bushing model and a black-box bushing model are derived and compared. A
Bouc-Wen hysteretic model is employed to derive a semi-physical model and an artificial neural
network algorithm is used to make a black-box bushing model. A 3-axes MTS rubber test
machine is used to capture the bushing characteristics. Sine excitation tests based on the different
frequencies and different amplitudes are performed to find out the bushing characteristics.
Random test results are also used to generate the coefficients of a semi-physical model and
weighting factors of the black-box model. Random simulations are carried out to verify the
bushing models and the results are compared with each other according to the numerical
efficiency and accuracy.
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1. Introduction

The multi-body dynamic analysis techniques
using high-performance computers have been ef-
fective tools for the analysis and design in the
machine and automobile industries. Many re-
searchers have conducted several studies to im-
prove the accuracy and the computational effi-
ciency of these computer-aided analysis techniques.
In the automobile industry, computer—-aided simu-
lations have been widely used for motion and
load analyses of a ground vehicle under various
conditions such as bumps and steering inputs.
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Particularly, in vehicle suspension systems, bush-
ing elements are usually used to improve the ride
quality and the components durability. The bush-
ing element is a hollow cylinder connecting the
outer steel cylindrical sleeve and the inner steel
cylindrical rod. The inner rod is connected to the
chassis and is used to transfer forces from the
wheel to the chassis. Due to the rubber materials
in the bushing, it has nonlinear characteristics for
both load amplitudes and frequencies, and also
hysteretic responses for the repeated vibration ex-
citations. Since the characteristics of the rubber
bushing affects significantly to the accuracy of the
vehicle dynamic simulation result, it should be
accurately considered in the vehicle suspension
model. The bushing forces depend not only on the
instantaneous deformation but also on the past
history of deformation. As a result, the hysteretic
restoring force cannot be expressed by an alge-
braic function of the instantaneous displacement
and velocity. This history-dependent characteris-
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tic of a bushing renders the hysteretic systems
more difficult to model and analyze than other
non-linear systems.

The multi-body dynamic analysis programs
such as ADAMS and RecurDyn generally adopt
the Kelvin-Voight model for the bushing element.
This model treats the bushing element as a linear
combination of three translational spring-dam-
pers and three rotational spring-dampers. How-
ever, this type of bushing model cannot properly
generate the hysteretic behavior of the bushing
element.

High-accuracy models of the bushing can be
classified as two different model classes: semi-
physical model and black-box model. As the semi-
physical models, there are Bingham visco-plastic
model and a modified Bouc-Wen model (Spencer
model). Also in the class of black-box models,
there are multi-variable polynomials, multi-layer
feedforward neural network (NN), radial-basis
neural networks (RBF), multi-variable splines,
wavelets, etc.

As a semi-physical model, Bouc-Wen (1975)
model has been widely used to represent non-
linear hysteretic systems. The Bouc-Wen differen-
tial model is originally proposed by Bouc and
subsequently generalized by other researchers. This
nonlinear differential equation model includes the
time history-dependent nature of the hysteretic
force. For a given time history of the displace-
ment, the restoring force is completely specified
by the differential model, without need of empir-
ical rules or additional conductions. This model
reflects local history dependence through intro-
ducing an extra state variable. Through appro-
priate choice of parameters in the model, it can
represent a wide variety of softening or harden-
ing, smoothly varying or nearly bilinear hysteretic
behavior. Sain (1998) carried out an initial study
of qualitative characteristics. Spencer (1996) de-
veloped the phenomenological model of a mag-
neto-rheological damper.

As a black-box model, the artificial neural net-
work algorithm was introduced in modeling the
vehicle suspension systems. Barber (2000) sug-
gested the possibility of the artificial neural net-
work for modeling the bushing. Sohn et al (2005)

carried out vehicle dynamic simulations using the
neural network bushing model.

In this paper, a semi-physical model (Bouc-
Wen model) and a black-box model (artificial
neural network model) are employed and com-
pared with each other according to the numerical
accuracy and numerical efficiency. A 3-axes MTS
rubber tester was used to capture the practical dy-
namic behavior of the bushing. The experimental
procedure and test result of the bushing element
are described in chapter 2. The Bouc-Wen bush-
ing model is introduced in the chapter 3 and the
artificial neural network model is explained in the
chapter 4. The results are shown and compared in
the chapter 5 and conclusions are shown in the
chapter 6.

2. Experiments

All the bushing tests were conducted by 3-axes
MTS testing machine as shown in Fig. 1, and the

Table 1 Specifications of bushing tester

Model name 3*axi.s Elastomer
Testing System

Max. Dyn. force 25.0 [kN]

Max. Static force 37.5 [kN]

Max. Dyn. length 25.0 [mm]
Frequency 0.1-80.0 [Hz]

Data acquisition rate over 6.0 [kHz ]

Fig. 1 Test machine
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specifications of the machine are shown in Table
1. The configuration and specifications of the
bushing used in experiment is shown in Fig. 2 and
in Table 2, respectively.

The harmonic tests were conducted by using
sinusoidal vibration wave form. The tests were
carried out with four different frequencies as shown
in Kuo (1997), that is, 1, 10, 20, and 30 Hz. The
corresponding amplitudes were, 0.5, 1.0, 2.0, and
3.0 mm, respectively. Since the power spectral
density of the bushing load measured from the
proving ground test durability analysis typically
exhibits a peak value in the range of 10-15 Hz, the
maximum frequency for the test was conserva-
tively set at 20 Hz. The forces on the rubber bush
due to change of the amplitude and the frequency

Table 2 Specifications of bushing (mm)

Outer steel diameter (do) 50
Inner steel diameter (di) 15

Length (1) 63
Outer steel thickness (t) 3

Fig. 2 Bushing configurations
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Fig. 3 Radial bushing force (10 Hz sine wave)

were measured for duration of 10 seconds. Figure
3 shows the radial bushing force due to the sine
wave excitation at 10 Hz. The more amplitude
increases, the higher bushing force becomes. Fig-
ure 4 shows the radial bushing force due to the
sine wave excitation with the amplitude of 3 mm.
The more frequency increases, the softer bushing
stiffness becomes.
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The random tests were carried out to make the
Bouc-Wen and neural network bushing model.
The random input signal was generated by using
CRPC III of the MTS machine. According to the
‘n’ value, the amplitude is changed as shown in
Fig. 5. In this study, the peak value of the ampli-
tude is set to 2 mm.

3. Semi-Physical Model

Figure 7 represents the Bouc-Wen hysteretic
bushing model used in this study. In this model,
the restoring force and deformation are connected
through a nonlinear differential equation contain-
ing unspecified loop parameters. By choosing the
loop parameters properly, it is possible to gener-
ate a large variety of different shapes of hysteretic
loops. By using the Bouc-Wen model, the re-
storing force-displacement relation of a hysteretic
bushing can be expressed in terms of the follow-
ing non-linear differential equations as shown in
Spencer (1996) and Wong (1994).

1= (k=) [Ai—{ n+Bisgn(i—9)sgn(z) } "] (1)

2= (=) [As—{y2tPosgn (— ) sgn(2) }| 2[™] (2)

y=c%{cm'c+k1(x—y) —koy+a121} (3)

w= Coj'cz {02x+kz(x—w)+a222} (4)

F:k0y+60w (5>

S

Fig. 7 Proposed Bouc-Wen bushing model

where x(#) represent the displacements. Two
hysteretic auxiliary variables 2 (#) and z(¢) are
employed to represent the hysteretic behavior.
The dot over a variable denotes the differentiation
of the variable with respect to time. Other para-
meters are determined from the identification pro-
cedures.

Identification procedures :

Bouc-Wen differential model of a hysteretic
curve can be used to curve-fit any hysteretic traces
with suitable choice of the model parameters. The
parameters of differential hysteretic loop are esti-
mated from the system identification, which in-
volves estimation of unspecified parameters of an
assumed or known model. Sixteen undetermined
parameters need to be identified from the experi-
mental data in order to complete this model.

When the system is governed by differential or
difference equations, or when the model is in-
tended to predict future response of a system, a
time-domain model will eventually be required.
Thus only time-domain parametric identification
methods are considered in this paper.

A root mean square (rms) error function can
be defined as ;

_ /1 & _ 2
E—\/W#ZI[Fexp Fpre] (6)

subject to

Al,AzZl, B15,8220, ,81‘1‘7’1>0, ,82—7’2>0

Where Fexp is the bushing force obtained from
experiments and Fpr is time points and is the
output force from the simulations. And A, Az, 51,
B2, 71, 72 are the parameters in Eqs. (1) ~ (4), re-
spectively.

By minimizing the error function E globally,
optimal values of these 16 parameters can thus be
determined. The constraint equations in Eq. (6)
can be found in Sain (1998).

The VisualDOC program was employed to find
the optimal parameters. VisualDOC is a general-
purpose optimization tool that allows the user to
quickly apply design optimization capabilities to
any types of problems. VisualDOC can perform



268 Jeong- Hyun Sohn, Seung-Kyu Lee, Jin- Kyu Ok and Wan-Suk Yoo

Table 3 Optimum parameters from the identific-

ation
Parameter Optimum Parameter Optimum
value value
Co 299.401 C2 1.825
) 2186.63 ko 0.526
B 1.875 Be 5.023
71 —10.991 72 —1.758
71 0.7795 N2 0.969
43} 0.6125 [42) 5.983
a1 0.805 A 2436.323
F 1453.895 A, 79.536
Mechanical
system dala VisualDOC
Optimum design
formulation
ADAMS GUI condition
Modeling
. d Optimization
~ADAMS simulation
I:l; (command window)
Simulation :
. Accent
Slopping crileria —-—vl desian
no
Initial | New )
Input. out files | Input, out files |

Fig. 8 Identification procedure chart

linear, non-linear, constrained and unconstrained
as well as integer, discrete and mixed optimiza-
tion. Gradient-based, non-gradient based, and
response surface approximate optimization algo-
rithms are also available. In this study, the genetic
algorithms (GA) is adopted to solve this identi-
fication problem as shown in Ok (2006). Fig. 8
shows how to link ADAMS and VisualDOC.
Parameters obtained from the identification pro-
cedure are shown in Table 3.

4. Black-Box Model

Since the rubber bush has hysteretic character-
istics, the inputs and outputs of the previous steps

[ trput ayer 1 || viddan tayer 1 || Hickien Layer 2 || Hicden layer 3 |
W, W, W,
— [
N
Dispiacement S _——§ _—"
. Py A //'/
— Output layer
=
__, Bushing
torce
| Triput lenper || Hickdern Laer 4 || Hidden layer 5

W, W,

e

| Feedback of Force

Fig. 9 Structure of the neural network used in this
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affect the current outputs. Therefore, inputs and
outputs of the past are used as the input data of
the current step. The input components of the
neural network are selected from the current dis-
placement, the past displacement and the past out-
puts. The value of the output layer is the rubber
bush force. Through several trial-and-error pro-
cesses, the structure of the model and the number
of neuron of hidden layers were set as shown in
Fig. 9. The relation between the input and the
output is represented by the following equation ;

< yu-n) (7)

where 3y, represents the output of k-th pattern,

Ve=1f (Up, Un-1, ***, Ur—m> Vi1,

Uy is the input of k-th pattern, m indicates the
number of previous input data, and /N means the
number of pre-step output.

In this study, the rubber bush characteristics
were measured by using the MTS machine. The
force data corresponding to the displacement of
the rubber bush were obtained by using RPCIII
software installed in the machine. Deformations
and forces were divided by the maximum value
of those, respectively. Then, the values are process-
ed by the hyperbolic tangent sigmoid function.
SIMULINK was used to interface with MATLAB
and ADAMS. Under the SIMULINK environ-
ment, ADAMS produces bushing deformation
data and these data are transferred to MATLAB.
Then, MATLAB calculates bushing force data
and these data are used for the next step calcula-
tion of ADAMS. Fig. 9 shows the neural net-
work structure used in this study and Fig. 10 is
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Fig. 11 Flow chart of the bushing force calculation

the SIMULINK structure. Fig. 11 represents the
flow chart of bushing force calculation.

5. Comparison of Two Models

Figure 12 shows the excitation input data for
the identification of the Bouc-Wen model and
artificial neural network model. Fig. 13 represents
the bushing forces versus displacement of two
models. In the figure, ‘Exp’ means the experi-
mental result, ‘ANN’ is the artificial neural net-
work result, and ‘BW’ represents the Bouc-Wen
result. Fig. 14 is the excitation input data for veri-
fication of the models. Figs. 15 and 16 represent
the bushing forces versus time, and the bushing
force versus displacement, respectively. Results of
two models show good agreements to the experi-
ments.
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RMS ratio and ESR are defined as the fol-

lowings ;



270 Jeong- Hyun Sohn, Seung-Kyu Lee, Jin- Kyu Ok and Wan-Suk Yoo

Experiment Table 4 Comparison of numerical accuracy
3000 ANN
| A BW ANN BW
: ' RMS ratio (%) 4.5 3.7
5 ESR ratio (%) 0.2 0.1
‘5 Maximum error (N) 218.8 248.6
o
= Peak error (N) 56 163.2

-2000 -

Table 5 Comparison of numerical efficiency

i ANN BW
-3000 T T T T T T 1
o 1 ¢ 3 4 s & z Identification 263 min 725 min
Time (s) . . .
Verification 22 min 4 sec
Fig. 15 Comparisons of the forces (for verification)
comparison results of numerical efficiency, re-
A000 -
spectively. In this study, Pentium IV with 2.0 GB
ey memory was used. The identification data with
2000 - 8.22 sec and the verification data with 6.44 sec
£ 100 are used.
8 In the Table 4, the ANN model gives more
£ o

1000
—— Experiment
ANN
BW

-2000 4

=3000 -

T T T T
2.0 A5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Displacement (mm)

Fig. 16 Forces vs displacement (for verification)

B (Feas ()~ Fon (1))
RMS ratio= . - (8)
5 2 (Fera(£))?
2 (Ferp () = Fors (1))?
ESR = (9)

T 2
2 (Fon () ~(F Z Few()))
RMS ratio is the ratio between the RMS of the
experiment result and the RMS of the simulation
error. ESR is the error-to-signal-ratio of the esti-
mated model. As a matter of fact, it is the ratio
between the variance of the estimation error and
the variance of the output. ESR lies in the range
[0;1]; ESR=1 means that the model only pre-
dicts the average value of the output. ESR=0
means that the model exactly predicts the output
of the system. Table 4 shows the comparison results
of numerical accuracy and Table 5 represents the

accurate results than BW model at peak error. As
it can be seen in the Table 5, ANN model gives
more efficiency than BW in the identification
process, but in the verification, BW takes less time
than ANN model. This is because, in the identifi-
cation process, ANN used only MATLAB but
BW experiences interface process with VisualDOC
and ADAMS. The genetic algorithms (GA) was
employed to find out the parameters in the BW
model. The stochastic and randomness nature of
GA can be able to avoid local optimum solution.
Therefore, it shows the good convergence to the
globally optimal solution but takes a long time to
calculate the optimal value in the identification
process. In the verification process, ANN model
takes interface process and has many calculation
functions such as 288 times multiplications, 31
times summations and activation function calcu-
lations. BW model doesn’t need to take the in-
terface process with VisualDOC and simply cal-
culate the uncomplicated differential equations in
ADAMS. Therefore, it takes a little simulation
time in the verification process and can be used
the application of the real time simulation.

6. Conclusions

In this study, the rubber bushing characteristics
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were tested by using a MTS 3-axes rubber tester.
Sine and random excitations are imposed on the
bushing in radial direction. Random test results
are used to identify the parameters of the Bouc-
Wen model and to extract the weighting factors of
the artificial neural network model.

Since the Bouc-Wen model is a semi-physical
model including the differential equation, this
model can be used to design the bushing element.
Also, since it is possible to represent the step re-
sponse, the bushing force calculation under the
steady state equilibrium is possible. However, it
requires longer time than Kelvin-Voight to esti-
mate the proper parameters.

Artificial neural network model gives an accu-
rate response under the random input. Through
enough learning processes, it can represent all
the nonlinear bushing characteristics. However, it
takes more time than Bouc-Wen model to calcu-
late the bushing forces.

Results of two models under the random ex-
citation show good agreements to the experiments.
Through the comparisons of two models, ANN
model is recommended for the numerical accuracy
and BW model is suggested for the numerical
efficiency.
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